|
Huidong Liu
Applied Scientist
Amazon
321 Terry Ave N, Seattle, WA 98109, USA
Email:
huidliu [at] cs [dot] stonybrook [dot] edu
liuhuido [at] amazon [dot] com
|
|
About Me
I am an Applied Scientist at Amazon. I received my Ph.D. degree in Computer Science from Stony Brook University, advised by Prof. Dimitris Samaras. I am interested in machine learning and computer vision in general, including representation learning,
deep generative models, multimodal learning and medical imaging.
|
Selected Publications
See the full list of publications at my Google Scholar. I publish under Huidong Liu or Hui-Dong Liu.
-
KG-FLIP: Knowledge-guided Fashion-domain Language-Image Pre-training for E-commerce
Qinjin Jia, Yang Liu, Shaoyuan Xu, Huidong Liu, Daoping Wu, Jinmiao Fu, Roland Vollgraf, Bryan Wang
The 61st Annual Meeting of the Association for Computational Linguistics (ACL), industry track, 2023
-
Token Sparsification for Faster Medical Image Segmentation
Lei Zhou, Huidong Liu, Joseph Bae, Junjun He, Dimitris Samaras, Prateek Prasanna
Information Processing In Medical Imaging (IPMI), 2023
[code]
-
Self pre-training with masked autoencoders for medical image analysis
Lei Zhou, Huidong Liu, Joseph Bae, Junjun He, Dimitris Samaras, Prateek Prasanna
IEEE International Symposium on Biomedical Imaging (ISBI), 2023
[code]
-
Deep Learning for Survival Analysis in Breast Cancer with Whole Slide Image Data
Huidong Liu, Tahsin Kurc
Bioinformatics, 2022
[code]
-
Chest Radiograph Disentanglement for COVID-19 Outcome Prediction
Lei Zhou, Joseph Bae, Huidong Liu, Gagandeep Singh, Jeremy Green, Dimitris Samaras, Prateek Prasanna
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021
[code]
-
Distribution Matching for Crowd Counting
Boyu Wang*, Huidong Liu*, Dimitris Samaras, Minh Hoai, (*equal contribution)
Advances in Neural Information Processing Systems (NeurIPS), 2020, (spotlight, 4.1%)
[supp] [code]
-
TopoGAN: A Topology-Aware Generative Adversarial Network
Fan Wang, Huidong Liu, Dimitris Samaras, Chao Chen
European Conference on Computer Vision (ECCV), 2020, (oral, 2.1%)
-
Wasserstein GAN with Quadratic Transport Cost
Huidong Liu, Xianfeng Gu, Dimitris Samaras
International Conference on Computer Vision (ICCV), 2019
[supp]
[code]
-
Calibrated multi-label classification with label correlations
Zhi-Fen He, Ming Yang, Hui-Dong Liu, Lei Wang
Neural Processing Letters, 2019
-
Modelling attention control using a convolutional neural network designed after the ventral visual pathway
Chen-Ping Yu, Huidong Liu, Dimitrios Samaras, Gregory J Zelinsky
Visual Cognition, 2019
-
Joint multi-label classification and label correlations with missing labels and feature selection
Zhi-Fen He, Ming Yang, Yang Gao, Hui-Dong Liu, Yilong Yin
Knowledge-Based Systems (KBS), 2019
-
A two-step computation of the exact GAN Wasserstein distance
Huidong Liu, Xianfeng Gu, Dimitris Samaras
International Conference on Machine Learning (ICML), 2018
[supp]
[code]
-
Multi-task joint feature selection for multi-label classification
Zhifen He, Ming Yang, Huidong Liu
Chinese Journal of Electronics, 2015
-
Fast local histogram specification
Hui-Dong Liu, Ming Yang, Yang Gao, Longbing Cao
IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT), 2014
-
Local histogram specification for face recognition under varying lighting conditions
Hui-Dong Liu, Ming Yang, Yang Gao, Chunyan Cui
Image and Vision Computing (IVC), 2014
-
Bilinear discriminative dictionary learning for face recognition
Hui-Dong Liu, Ming Yang, Yang Gao, Yilong Yin, Liang Chen
Pattern Recognition (PR), 2014
-
Local histogram specification using learned histograms for face recognition
Hui-Dong Liu, Ming Yang
IEEE International Conference on Image Processing (ICIP), 2012
|
Academic Services
Reviewer for ICML (2020-), NeurIPS (2020-), ICLR (2022-), CVPR (2020-), ICCV (2021-), ECCV (2020-), AAAI (2021-), etc.
|
Selected Awards
- ICML Top Reviewer, 2020
- ICML Travel Award, 2018
|
|